Online Learning Experiences and Impact on Statistics Education Perspectives
Taylor Harrison, Christina Azmy, Dr. Hollylynne Lee

Research Problem and Significance

• Increasing importance of data analysis and statistical thinking in today’s society
• Standards for mathematics have added sections on statistics and probability at middle and high school levels (National Governors Association Center for Best Practice & Council of Chief State School Officers, 2010)
• Emphasis placed on conceptual understanding of statistics topics → more of a need for teacher preparation in statistics education
• Despite this need, evidence is that teachers are underprepared to teach statistics topics (Lovett & Lee, 2017)

Theoretical Framework

Teacher Perspectives on Teaching Statistics

• 4 categories of factors that affect PSTs self-efficacy (Lovett & Lee, 2017)
• Online experience impacted perspectives of participants - practicing teachers (Lee, Lovett, & Mojica, 2017)

Using Technology to Teach Statistics

• is effective (e.g. Hammerman & Rubin, 2004; Lee et al., 2014; Meletiou-Mavrotheris, 2003)

Online Learning

• is effective. Relevant factors are supportive learning environment, learners’ motivation, interaction, and opportunities for practice. (Noesgaard & Ørngreen, 2015)

Research Question

How did participants’ experiences in online modules impact their perspectives on what good statistics teaching and learning is?

Results and Conclusions

Five Salient Areas of Participants’ Perspectives

<table>
<thead>
<tr>
<th>The Nature of Statistics</th>
<th>Features of a Good Statistical Task</th>
<th>Learning Statistics</th>
<th>The Practice of Teaching Statistics</th>
<th>The Role of Technology in Statistics Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics is different from mathematics</td>
<td>Interactive or “hands-on”</td>
<td>Students need to get to know data</td>
<td>Need for teachers to ask good questions</td>
<td>Allows performing of statistical tasks quickly</td>
</tr>
<tr>
<td>Statistics is engaging and fun for students</td>
<td>Attention to data characteristics (e.g. real, interesting, large)</td>
<td>Technology can affect how students engage with a task</td>
<td>Need for teachers to ensure students are engaged</td>
<td>Usefulness of multiple linked representations</td>
</tr>
<tr>
<td>Used real, interesting, and/or large data</td>
<td>Interactive or “hands-on”</td>
<td>Need to attend to diversity in statistical skill levels of students</td>
<td>Grouping students</td>
<td>Difficulty of learning tool or needing time to learn tool</td>
</tr>
<tr>
<td>Allotted time for students to become familiar with data</td>
<td></td>
<td>Grouping students</td>
<td>Included launch phase for students to get engaged</td>
<td>Attended to students learning to use tool</td>
</tr>
</tbody>
</table>

Note: Bolded perspectives were mentioned by over half of teachers or were observed in over half of lesson plans.

• Perspectives seen here also seen in previous online contexts – ideas about:
 • Statistics more than computations and procedures, using dynamic technology, using real, messy data, and increasing levels of statistical understanding (Lee, Lovett, & Mojica, 2017)
 • Additional perspectives we observed – ideas about:
 • Curricular considerations, the engaging nature of statistics, as well as broader perspectives such as pedagogical strategies and the features of a good statistical task
 • Lack of evidence in lesson plans of expressed perspectives in discussion forums
 • Eight participants stated students should collect their own data, yet only two lesson plans had students do so
 • Six participants specifically said teachers need to provide their students with guidance on how to use technology, and yet, only two lesson plans included the teacher doing so

References

Online Learning Experiences and Impact on Statistics Education Perspectives
Taylor Harrison, Christina Azmy, Dr. Hollylynne Lee

Research Problem and Significance

• Increasing importance of data analysis and statistical thinking in today’s society
• Standards for mathematics have added sections on statistics and probability at middle and high school levels (National Governors Association Center for Best Practice & Council of Chief State School Officers, 2010)
• Emphasis placed on conceptual understanding of statistics topics → more of a need for teacher preparation in statistics education
• Despite this need, evidence is that teachers are underprepared to teach statistics topics (Lovett & Lee, 2017)

Theoretical Framework

Teacher Perspectives on Teaching Statistics

• 4 categories of factors that affect PSTs self-efficacy (Lovett & Lee, 2017)
• Online experience impacted perspectives of participants - practicing teachers (Lee, Lovett, & Mojica, 2017)

Using Technology to Teach Statistics

• is effective (e.g. Hammerman & Rubin, 2004; Lee et al., 2014; Meletiou-Mavrotheris, 2003)

Online Learning

• is effective. Relevant factors are supportive learning environment, learners’ motivation, interaction, and opportunities for practice. (Noesgaard & Ørngreen, 2015)

Research Question

How did participants’ experiences in online modules impact their perspectives on what good statistics teaching and learning is?

Results and Conclusions

Five Salient Areas of Participants’ Perspectives

<table>
<thead>
<tr>
<th>The Nature of Statistics</th>
<th>Features of a Good Statistical Task</th>
<th>Learning Statistics</th>
<th>The Practice of Teaching Statistics</th>
<th>The Role of Technology in Statistics Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics is different from mathematics</td>
<td>Interactive or “hands-on”</td>
<td>Students need to get to know data</td>
<td>Need for teachers to ask good questions</td>
<td>Allows performing of statistical tasks quickly</td>
</tr>
<tr>
<td>Statistics is engaging and fun for students</td>
<td>Attention to data characteristics (e.g. real, interesting, large)</td>
<td>Technology can affect how students engage with a task</td>
<td>Need for teachers to ensure students are engaged</td>
<td>Usefulness of multiple linked representations</td>
</tr>
<tr>
<td>Used real, interesting, and/or large data</td>
<td>Interactive or “hands-on”</td>
<td>Need to attend to diversity in statistical skill levels of students</td>
<td>Grouping students</td>
<td>Difficulty of learning tool or needing time to learn tool</td>
</tr>
<tr>
<td>Allotted time for students to become familiar with data</td>
<td></td>
<td>Grouping students</td>
<td>Included launch phase for students to get engaged</td>
<td>Attended to students learning to use tool</td>
</tr>
</tbody>
</table>

Note: Bolded perspectives were mentioned by over half of teachers or were observed in over half of lesson plans.

• Perspectives seen here also seen in previous online contexts – ideas about:
 • Statistics more than computations and procedures, using dynamic technology, using real, messy data, and increasing levels of statistical understanding (Lee, Lovett, & Mojica, 2017)
 • Additional perspectives we observed – ideas about:
 • Curricular considerations, the engaging nature of statistics, as well as broader perspectives such as pedagogical strategies and the features of a good statistical task
 • Lack of evidence in lesson plans of expressed perspectives in discussion forums
 • Eight participants stated students should collect their own data, yet only two lesson plans had students do so
 • Six participants specifically said teachers need to provide their students with guidance on how to use technology, and yet, only two lesson plans included the teacher doing so

References
