Investigating Real World Data with Online Visualization Tools: Building Future Data Scientists

Hollylynne S. Lee, Gemma Mojica, Christina Azmy
NC State University
April 26, 2018
NCTM Annual Conference
Washington, DC
Statistics and Data Science Careers

Highly ranked careers in the past 5 years

Growth in demands expected to be over 30% through 2024

http://thisisstatistics.org
What is in our mathematics curriculum to prepare students for these careers?
To engage in data science and statistics, one uses ____________ skills and understandings to create insight from data?
Go to Menti.com Use code 809206

To engage in data science and statistics, one uses __________ skills and understandings to create insight from data?

Enter a word

Enter another word

Enter another word

Submit
What is data science?

Drew Conway, 2013
Statistical and Data Literacy should include knowing ...

- who collects data about us, why and how they collect it;
- how to analyze and interpret data from random and non-random samples;
- issues of data privacy and ownership;
- how to create representations of data to answer questions about real-life processes;
- the importance of the provenance of data and how it is stored;
- why data must sometimes be altered before analysis; and
- some aspects of predictive modeling.

Gould (2017)
CODAP: Common Online Data Analysis Platform
https://codap.concord.org/
Our Goal: Increase opportunities for learning data science and statistics.....

within existing curricula constraints
Core Design Principles for Data, Tools, and Tasks

- **Data** is real (collected by students or authenticated by teacher), multivariate (categorical & quantitative), “large”, and sometimes messy
- **Data** contexts are engaging to students

- **Tools** facilitate data moves, in tabular and graphical form
- **Tools** support links among representations of data

- **Tasks** have multiple entry points for different levels of sophistication
- **Tasks** provoke curiosity and promote different ways of engaging with data
Setting the context....

Ever worry about the cost of gas to support your commute to work and active lifestyle?

Do you wonder how the automobile industry may have made vehicles more or less fuel efficient?

Ever worry about how the automobile industry impacts our environment?
Investigating Fuel Economy of Vehicles
Look up a few cases!

www.fueleconomy.gov/feg/findacar.shtml
A Vehicle: 2007 Toyota Sienna

Fuel Economy

Energy and Environment

Safety

Sp

EPA Fuel Economy

MPG estimates for 2016 and older vehicles may have been revised.

Unofficial MPG Estimates from Vehicle Owners

Learn more about "Un MPG: Discover"

You save or spend

Note: The average 2016 vehicle gets 27 MPG

You SPEND $3,000 more in fuel costs over 6 years compared to the average new vehicle

Annual Fuel Cost

$2,150

Cost to Drive 25 Miles

$7.62

Cost to Fill the Tank

$55

Tank Size

20.0 gallons

Based on 45% highway, 55% city driving, 15,000 annual miles and current fuel prices.

Vehicle Specification Data

EPA Size Class

Minivan - 2WD

Drive

Front-Wheel Drive

Start-Stop Technology

Not Available

Gas Guzzler

No

Turbocharger

No

Supercharger

No

Passenger Volume

Luggage Volume

Fuel Type

Regular Gasoline

Engine Descriptor

CLKUP

Transmission Descriptor

Co2 Emissions

468 grams per mile

Energy Impact Score

Annual Petroleum Consumption

- U.S. barrel
- Imported barrel

1 barrel = 42 gallons

Greenhouse Gas Emissions

17.3 barrels

For model years 2012 and earlier, tailpipe CO2 is estimated using an EPA emissions factor and does not reflect direct test results.

EPA Smog Rating

- Select State -

Based on 45% highway, 55% city driving, 15,000 annual miles and current fuel prices.

Personalize
Going beyond a few cases....

If we looked at data *for many vehicles*, what could we learn about fuel economy in vehicles?
Let’s explore some data from 2015

What vehicle attributes may be of interest?
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>Company name</td>
</tr>
<tr>
<td>Carline</td>
<td>Model name of the vehicle</td>
</tr>
<tr>
<td>Vehicle_Type</td>
<td>Identifies the vehicle as car, SUV, van, minivan, or truck</td>
</tr>
<tr>
<td>Eng_Displacement</td>
<td>A measure of volume (in liters) of the total volume of air in all the cylinders in an engine as air is swept through the chambers in a complete cycle.</td>
</tr>
<tr>
<td>No_Cylinders</td>
<td>Number of cylinders in an engine</td>
</tr>
<tr>
<td>City_MPG</td>
<td>Estimated miles per gallon in city driving</td>
</tr>
<tr>
<td>Hwy_MPG</td>
<td>Estimated miles per gallon in highway driving</td>
</tr>
<tr>
<td>Comb_MPG</td>
<td>Estimated miles per gallon in a combination of city driving (55%) and highway driving (45%)</td>
</tr>
<tr>
<td>Guzzler</td>
<td>Identifies whether the vehicle has exceptionally low fuel economy (Y, N)</td>
</tr>
<tr>
<td>Transmission</td>
<td>Identifies vehicles as manual or automatic transmission</td>
</tr>
<tr>
<td>Detail_Transmission</td>
<td>Detailed description of transmission type</td>
</tr>
<tr>
<td>No_Gears</td>
<td>Number of transmission gears</td>
</tr>
<tr>
<td>Drive_Desc</td>
<td>Drivetrain (2-wheel, 4-wheel, or all-wheel)</td>
</tr>
<tr>
<td>Fuel_Usage</td>
<td>Type of fuel (premium, midgrade, regular, diesel)</td>
</tr>
<tr>
<td>AnnualFuel_Cost</td>
<td>Estimated annual fuel cost assuming 15,000 miles per year (55% city and 45% highway) and average fuel price</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Identifies whether the vehicle has a hybrid engine (Y, N) such that it utilizes more than one form of onboard energy to achieve propulsion. A hybrid will have a traditional engine and fuel tank, as well as one or more electric motors and a battery pack</td>
</tr>
</tbody>
</table>
1226 vehicles from 2015

We could use *all* data

Or

We could use *a* random sample of the data

Or

We could use random *samples* from the data

Or

We could *take* random samples from the data
Different Data Formats

Sample of 300 vehicles (Option 2)

tinyurl.com/2015VehiclesSample

Option 3: Download CSV file and import into CODAP

tinyurl.com/vehiclescsv codap.concord.org

Option 4: Data in CODAP with a Sampler designed

tinyurl.com/sampler2015vehicles
Examining Relationships in Samples of Data and Building Inference Ideas
Discussion Questions

What were the benefits of using this large multivariate data set? What about drawbacks?

What data moves did students use to model and reason about the linear relationship?

To what extent does this task promote curiosity?
Discussion of Data Tools and Task

- **Data** is real (collected by students or authenticated by teacher), multivariate (categorical & quantitative), “large”, and sometimes messy
- **Data** contexts are engaging to students

- **Tools** facilitate data moves, in tabular and graphical form
- **Tools** support links among representations of data

- **Tasks** have multiple entry points for different levels of sophistication
- **Tasks** provoke curiosity and promote different ways of engaging with data
Sampling Vehicles and Collecting Slopes

https://tinyurl.com/samplingVehiclesSlope
Ready to Learn More?

Join educators from around the world in FREE online professional development courses!

Teaching Statistics Through Inferential Reasoning--Going on now! Register by May 1 and course ends May 28th

go.ncsu.edu/tsir
Contact Us!

Hollylynne Lee
Professor of Mathematics & Statistics Education
Director of HI-RiSE
hollylynne@ncsu.edu

hirise.fi.ncsu.edu